1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
| import torch import torch.nn as nn from torch.nn import Module from scipy.sparse import coo_matrix from scipy.sparse import vstack from scipy import sparse import numpy as np
class SVD(Module):
def __init__(self,userNum,itemNum,dim): super(SVD, self).__init__() self.uEmbd = nn.Embedding(userNum,dim) self.iEmbd = nn.Embedding(itemNum,dim) self.uBias = nn.Embedding(userNum,1) self.iBias = nn.Embedding(itemNum,1) self.overAllBias = nn.Parameter(torch.Tensor([0]))
def forward(self, userIdx,itemIdx): uembd = self.uEmbd(userIdx) iembd = self.iEmbd(itemIdx) ubias = self.uBias(userIdx) ibias = self.iBias(itemIdx)
biases = ubias + ibias + self.overAllBias prediction = torch.sum(torch.mul(uembd,iembd),dim=1) + biases.flatten()
return prediction
class NCF(Module):
def __init__(self,userNum,itemNum,dim,layers=[128,64,32,8]): super(NCF, self).__init__() self.uEmbd = nn.Embedding(userNum,dim) self.iEmbd = nn.Embedding(itemNum,dim) self.fc_layers = torch.nn.ModuleList() self.finalLayer = torch.nn.Linear(layers[-1],1)
for From,To in zip(layers[:-1],layers[1:]): self.fc_layers.append(nn.Linear(From,To))
def forward(self, userIdx,itemIdx): uembd = self.uEmbd(userIdx) iembd = self.iEmbd(itemIdx) embd = torch.cat([uembd, iembd], dim=1) x = embd for l in self.fc_layers: x = l(x) x = nn.ReLU()(x)
prediction = self.finalLayer(x) return prediction.flatten()
class GNNLayer(Module):
def __init__(self,inF,outF):
super(GNNLayer,self).__init__() self.inF = inF self.outF = outF self.linear = torch.nn.Linear(in_features=inF,out_features=outF) self.interActTransform = torch.nn.Linear(in_features=inF,out_features=outF)
def forward(self, laplacianMat,selfLoop,features): # for GCF ajdMat is a (N+M) by (N+M) mat # laplacianMat L = D^-1(A)D^-1 # 拉普拉斯矩阵 L1 = laplacianMat + selfLoop L2 = laplacianMat.cuda() L1 = L1.cuda() inter_feature = torch.sparse.mm(L2,features) inter_feature = torch.mul(inter_feature,features)
inter_part1 = self.linear(torch.sparse.mm(L1,features)) inter_part2 = self.interActTransform(torch.sparse.mm(L2,inter_feature))
return inter_part1+inter_part2
class GCF(Module):
def __init__(self,userNum,itemNum,rt,embedSize=100,layers=[100,80,50],useCuda=True):
super(GCF,self).__init__() self.useCuda = useCuda self.userNum = userNum self.itemNum = itemNum self.uEmbd = nn.Embedding(userNum,embedSize) self.iEmbd = nn.Embedding(itemNum,embedSize) self.GNNlayers = torch.nn.ModuleList() self.LaplacianMat = self.buildLaplacianMat(rt) # sparse format self.leakyRelu = nn.LeakyReLU() self.selfLoop = self.getSparseEye(self.userNum+self.itemNum)
self.transForm1 = nn.Linear(in_features=layers[-1]*(len(layers))*2,out_features=64) self.transForm2 = nn.Linear(in_features=64,out_features=32) self.transForm3 = nn.Linear(in_features=32,out_features=1)
for From,To in zip(layers[:-1],layers[1:]): self.GNNlayers.append(GNNLayer(From,To))
def getSparseEye(self,num): i = torch.LongTensor([[k for k in range(0,num)],[j for j in range(0,num)]]) val = torch.FloatTensor([1]*num) return torch.sparse.FloatTensor(i,val)
def buildLaplacianMat(self,rt):
rt_item = rt['itemId'] + self.userNum uiMat = coo_matrix((rt['rating'], (rt['userId'], rt['itemId'])))
uiMat_upperPart = coo_matrix((rt['rating'], (rt['userId'], rt_item))) uiMat = uiMat.transpose() uiMat.resize((self.itemNum, self.userNum + self.itemNum))
A = sparse.vstack([uiMat_upperPart,uiMat]) selfLoop = sparse.eye(self.userNum+self.itemNum) sumArr = (A>0).sum(axis=1) diag = list(np.array(sumArr.flatten())[0]) diag = np.power(diag,-0.5) D = sparse.diags(diag) L = D * A * D L = sparse.coo_matrix(L) row = L.row col = L.col i = torch.LongTensor([row,col]) data = torch.FloatTensor(L.data) SparseL = torch.sparse.FloatTensor(i,data) return SparseL
def getFeatureMat(self): uidx = torch.LongTensor([i for i in range(self.userNum)]) iidx = torch.LongTensor([i for i in range(self.itemNum)]) if self.useCuda == True: uidx = uidx.cuda() iidx = iidx.cuda()
userEmbd = self.uEmbd(uidx) itemEmbd = self.iEmbd(iidx) features = torch.cat([userEmbd,itemEmbd],dim=0) return features
def forward(self,userIdx,itemIdx):
itemIdx = itemIdx + self.userNum userIdx = list(userIdx.cpu().data) itemIdx = list(itemIdx.cpu().data) # gcf data propagation features = self.getFeatureMat() finalEmbd = features.clone() for gnn in self.GNNlayers: features = gnn(self.LaplacianMat,self.selfLoop,features) features = nn.ReLU()(features) finalEmbd = torch.cat([finalEmbd,features.clone()],dim=1)
userEmbd = finalEmbd[userIdx] itemEmbd = finalEmbd[itemIdx] embd = torch.cat([userEmbd,itemEmbd],dim=1)
embd = nn.ReLU()(self.transForm1(embd)) embd = self.transForm2(embd) embd = self.transForm3(embd) prediction = embd.flatten()
return prediction
|